

Open Source Speech Interaction with the Voce Library

Tyler Streeter

Virtual Reality Applications Center, Iowa State University, Ames, IA,
streeter@iastate.edu

Abstract

Speech recognition and synthesis
technology provides a natural
interaction method for many computing
tasks. It allows users to communicate
with computers naturally using spoken
language, requiring very little training.
Although this technology has existed for
several decades, it has recently become
widely usable because of the increasing
capabilities of consumer PCs. A
remaining problem is that there are no
software libraries available for speech
interaction that are Open Source, cross-
platform, and accessible from multiple
programming languages. A new
software library is proposed to alleviate
this problem. Use of this library will
hopefully make speech interaction more
ubiquitous.

1 Introduction

Speech interaction1 technology enables
natural interfaces with all kinds of
computers, from cell phones, PDAs, and
PCs to high-end virtual reality systems.
Benefits of speech interaction include:

• Improved interaction for people
with disabilities (e.g. blindness,

1 The phrase “speech interaction” will be used
here to represent two-way interaction (i.e. speech
recognition and speech synthesis).

motor control disorders, carpal
tunnel syndrome).

• Intuitive interaction: speech is
natural for most people and
requires little to no special
training.

• Better mobility: for example,
users can move around their
homes or offices freely and still
interact with computers without
having to sit down and use a
mouse or keyboard.

• Hands-free interaction with
virtual reality and augmented
reality applications.

Many, but not all, tasks can benefit from
speech interaction. For example,
manipulating large amounts of data is
difficult through speech alone.
Nevertheless, the subset of tasks that
could (and already do) benefit from
speech interaction is significant. The
following is a list of examples:

• Writing documents and email
through dictation

• Hearing documents read aloud
• Software development [1]
• Customer service phone menus
• Phone orders for e.g. airline

tickets

In the long term, a limitation of speech
recognition is that it forces users to
speak aloud, sometimes bothering

people nearby. This also applies to cell
phone usage. A promising solution is
the use of “sub-vocal speech” where
computers recognize nerve cell firing
patterns in the throat. NASA researchers
[2] have made advances in this area
recently, claiming 92% accuracy rates on
a small set of words and digits. Because
the underlying technology (pattern
recognition) is basically the same as that
for speech recognition, existing speech
recognition software could be adapted
for sub-vocal speech. This new
technique could provide all the benefits
of speech recognition while allowing
users to utilize the technology in quiet
environment, removing a significant
limitation from speech interaction
technology.

The rest of this paper is organized as
follows: section 2 covers existing speech
interaction software, section 3 introduces
the Voce software library, section 4
describes Voce being used in three
sample applications, section 5 proposes
future work, and section 6 contains the
paper’s conclusion.

2 Existing Software

This section discusses a few of the most
notable software tools available for
speech interaction.

Dragon Naturally Speaking version 8 [3]
is a mature, commercially-available
product with a software development kit
for application developers. However, it
is not free, Open Source, or available on
multiple platforms (currently it works
only in Windows).

The Microsoft Speech SDK 5.1 [4] is a
mature library that is freely available. It

also is only available on Windows and is
not Open Source.

The CMU Sphinx project [5] has
produced several free, Open Source
libraries (Sphinx-2, Sphinx-3, and
Sphinx-4) aimed at handling speech
recognition. Sphinx-4 is the most
advanced version, designed mainly as a
research platform with pluggable
components. It is written totally in Java,
making it easily portable to multiple
platforms.

FreeTTS [6] is a free, Open Source
speech synthesis library. It also works
on multiple platforms because it is
written in Java.

From a software developer’s point of
view, all of the existing speech
interaction software libraries have
limitations. Some are not Open Source,
some are built for a single operating
system, some have no API for
developers, and most do not handle both
speech recognition and synthesis. The
most promising library is Sphinx-4, but
even it has several limitations (e.g.
support for a single programming
language, no integrated speech synthesis,
and a complex API) related to the
project requirements presented below.
The main goal of this project is to
alleviate these limitations by providing a
new software library.

The following list describes the
requirements for this new library and
how they were achieved:

• Speech recognition – CMU
Sphinx4 was used to handle
recognition.

• Speech synthesis – FreeTTS was
used to handle synthesis.

• Voce should be free and Open
Source – Voce uses the LGPL
and BSD licenses [13].

• Cross-platform – Sphinx-4 and
FreeTTS are both written in Java,
making Voce easily portable to
platforms with Java virtual
machine implementations. Voce
itself is mostly written in Java
with bindings for C++.

• Simple API – Care was taken to
ensure that only the essential
functions are exposed to the end
users.

• Multiple programming language
support – Java and C++ are
supported.

3 The Voce Library

This section describes the solution to the
previously-mentioned problems.

3.1 Overall Concept

To meet the requirements listed in the
previous section, the author designed
and implemented a new software library,
“Voce.” Rather than implement speech
recognition and synthesis software from
scratch, this library exploits the strengths
of existing software. Voce provides a
thin layer between the underlying speech
interaction libraries and applications.

3.2 Implementation

Voce’s overall architecture is
conceptually simple (see Figure 1). For
speech synthesis, Voce takes strings of
text from applications and passes them
to a FreeTTS synthesizer which converts
them to audio output. For speech
recognition it allocates a Sphinx4
microphone which continuously listens
for incoming audio data from the user’s

audio hardware. A Sphinx4 recognizer
constantly processes this data, adding
recognized strings to an internal queue
which can be queried by the application.
Both the synthesis and recognition
components run in threads separate from
the application’s main thread to avoid
making the application wait for synthesis
or recognition to finish. Most of the
complexity of the underlying technology
is hidden from application developers,
allowing them to treat speech interaction
like a simple input/output device. Low-
level audio support is already included in
Sphinx-4 and FreeTTS via the Java
Sound API, which provides a cross-
platform way to deal with audio
hardware.

Figure 1: Voce Architecture

One of the limitations of Sphinx-4 and
FreeTTS is that they are written in Java
and cannot be accessed directly from
other commonly-used languages like
C++. Another limitation is that they
have been designed to be used by
experienced researchers, not software
developers who want to add speech
interaction to their applications quickly.
Again, two of the goals of this project
were to provide support for multiple
programming languages and to design a
simple API for software developers.

Sphinx4

FreeTTS

Speech
Input

Text
Input

Text
Output

Speech
Output

Voce

For C++ support, Voce uses the Java
Native Interface [14] to create a C++
API that can access the Java Voce
package internally. A single C++ header
file contains all necessary functions to
interface a C++ application with the Java
package. It allocates and deallocates a
Java virtual machine, looks up Java
method IDs, and calls the Java methods.

Voce’s API (which is identical in the
Java and C++ versions) was designed to
be as simple as possible, consisting of
only eight functions (see Appendix A for
a more detailed description).

3.3 Grammar Files

Grammar files define what is recognized
during speech recognition. Although the
entire dictionary of possible words is
120,000 words long, most applications
will only use a small subset defined by
the grammar files. These files are
application-specific, so they must be
written by the application developer.
They must conform to the Java Speech
Grammar File (JSGF) format. The
following is an extremely simple JSGF
grammar:

grammar fruit;

public <fruitTypes> = (apple | orange | grape);

This grammar is named “fruit.” The
name can be specified when initializing
Voce to tell it which grammar to use (see
Appendix A). The grammar rule
“fruitTypes” is satisfied if any one of the
items in the list is recognized. When a
rule is satisfied, the spoken words that
satisfied the rule are put into a single
string and added to the recognizer’s
internal queue. The “or” (“|”) operator
specifies that only one of the members
of the list is required.

The next example is a slightly more
complex grammar:

grammar robot;

public <command> = (forward | stop | <turn>);

<turn> = turn <direction>;

<direction> = (left | right);

In this example, a set of simple
commands are being used to guide a
robot. The “command” grammar rule is
satisfied if the words “forward” or
“stop” are spoken or if the “turn” rule is
satisfied. The “turn” rule is satisfied if
the word “turn” followed by “left” or
“right” is spoken.

3.4 Post-processing Recognized Text

Once audio data has been recognized
and converted to text, it is up to the
application to decide how to process it.
Voce does no additional analysis, such
as natural language processing, on the
recognized strings. The following
examples demonstrate common ways to
process the recognized strings.

A simple method is to check whether the
recognized strings contain certain
keywords. For example, an application
could check whether the user wants to
quit by searching all recognized strings
for the word “quit” (assuming “quit” has
been specified in the grammar). If the
application has a list of commands (e.g.
“left”, “right”, “up”, “down”, “slow”,
and “fast”), it will need to search the
recognized strings for all of these words.
The following C++ example
demonstrates this method:

while (voce::getRecognizerQueueSize() > 0)
{
 std::string s = voce::popRecognizedString();

 // Check if the string contains 'quit'.
 if (std::string::npos != s.rfind("quit"))
 {
 quitApp = true;
 }

 // Check for movement direction.
 if (std::string::npos != s.rfind("left"))
 {
 moveDirection = MOVE_LEFT;
 }
 else if (std::string::npos !=
 s.rfind("right"))
 {
 moveDirection = MOVE_RIGHT;
 }
 else if (std::string::npos !=
 s.rfind("up"))
 {
 moveDirection = MOVE_UP;
 }
 else if (std::string::npos !=
 s.rfind("down"))
 {
 moveDirection = MOVE_DOWN;
 }
 else if (std::string::npos !=
 s.rfind("slow"))
 {
 moveSpeed = SPEED_SLOW;
 }
 else if (std::string::npos !=
 s.rfind("fast"))
 {
 moveSpeed = SPEED_FAST;
 }
}

This method works fine for small lists of
commands but might pose a problem for
applications with large numbers of
commands. To rectify this, applications
should organize their command parsing
hierarchically. Using the same example
as before, we will now add two
“categories”: “move” and “speed.” Here
is the resulting C++ code:

while (voce::getRecognizerQueueSize() > 0)
{
 std::string s = voce::popRecognizedString();

 // Check if the string contains 'quit'.
 if (std::string::npos != s.rfind("quit"))
 {
 quitApp = true;
 }

 // Check for movement direction.
 if (std::string::npos != s.rfind("move"))
 {
 if (std::string::npos != s.rfind("left"))
 {
 moveDirection = MOVE_LEFT;
 }

 else if (std::string::npos !=
 s.rfind("right"))
 {
 moveDirection = MOVE_RIGHT;
 }
 else if (std::string::npos !=
 s.rfind("up"))
 {
 moveDirection = MOVE_UP;
 }
 else if (std::string::npos !=
 s.rfind("down"))
 {
 moveDirection = MOVE_DOWN;
 }
 }
 else if (std::string::npos !=
 s.rfind("speed"))
 {
 if (std::string::npos != s.rfind("slow"))
 {
 moveSpeed = SPEED_SLOW;
 }
 else if (std::string::npos !=
 s.rfind("fast"))
 {
 moveSpeed = SPEED_FAST;
 }
 }

Users of this example activate
commands by saying, for example,
“move left,” instead of just “left.” This
hierarchical/categorical organization can
result in more natural commands if
implemented carefully. Additionally,
the application parses speech commands
using far fewer string comparisons than
the previous example.

3.5 Problems Encountered

Two significant problems arose during
development, both concerning threading:
1) speech synthesis takes a significant
amount of time to produce its first audio
output when running an application, and
2) CMU Sphinx4’s primary recognition
function is not threaded (i.e. it causes
applications to wait for it to finish
recognizing before proceeding).

To make speech synthesis output audio
faster on first use, the author attempted
to increase the synthesizer’s thread
priority to make it respond faster.
However, FreeTTS does not give user’s
access to this thread. The problem is
that the synthesizer does not actually

create a separate thread until the first
time it is asked to synthesize. The
solution was to have the synthesizer
output a silent string (i.e. “ “) when it is
initialized, which forces it to create its
thread immediately.

The problem of the recognizer not being
in its own thread was more serious. In
order to allow the user’s application to
continue normal processing while the
recognizer is working, the recognizer
had to use a separate thread. This was
easily rectified through the use of Java’s
threading functions (i.e. by having the
recognizer class implement Java’s
“Runnable” interface).

No other serious problems were
encountered. The FreeTTS and Sphinx4
libraries are solid, well-tested pieces of
software that worked as described.

4 Test Applications

This section describes three applications
developed to test Voce, giving subjective
results on how well the library works in
practice. These applications are
available for download [7].

The first application (implemented in
Java and C++) tests speech synthesis. It
simply requests that the user enter text to
have it synthesized. The following line
of C++ code demonstrates the simplicity
of using the speech synthesizer in this
example:

voce::synthesize("hello world”);

At runtime there is no significant lag
between the time the user enters the text
and the beginning of the synthesizer’s
audio output. By entering multiple lines
of text quickly, it is possible to
demonstrate how the synthesizer queues

messages and synthesizes them as soon
as possible.

The second test application
(implemented in Java and C++)
demonstrates recognition capabilities. It
uses a simple “digits” grammar file that
tells the recognizer to listen for the digits
0-9. Users simply speak arbitrary
sequences of digits, and the program
displays text representing what was
recognized. The following section of
C++ code shows the simplicity of using
the speech recognizer in this example:

while (voce::getRecognizerQueueSize() > 0)
{
 std::string s = voce::popRecognizedString();
 std::cout << "You said: " << s << std::endl;
}

The application simply checks the
recognizer’s queue size periodically to
see if it has any new recognized strings.
If so, the application can handle them as
desired.

The third test application (implemented
in C++) uses both synthesis and
recognition. The application is a visual
3D environment (Figure 3) that allows
users to create and manipulate simple 3D
physically simulated objects (using the
Ogre [8] rendering engine for graphics
and OPAL [9] for physics). Users
simply speak the type of object they
want, and the application generates the
object in the 3D environment. By using
a very simple grammar (i.e. “color” +
“object type”), users can generate a wide
variety of color-object combinations.
There was no additional lag in
recognition in this application compared
to the simple recognition application
mentioned above.

Figure 3: 3D Test Application

It appears that the type of microphone
being used greatly affects the
recognizer’s accuracy. The audio input
must have a moderately high volume in
order to be recognized, but too much
volume may add unwanted background
noise. Low-quality microphones will
not filter out this background noise
which confuses the recognizer. Higher
quality microphones, on the other hand,
can filter out background noise and keep
unwanted data from getting sent to the
recognizer. The author experimented
with a built-in laptop computer
microphone, an inexpensive headset, and
a mid-range omni-directional
microphone, each more successful than
the last.

5 Future Work

The following is an optional list of
features that could be added to the Voce
library. One of the original goals was to
keep the API simple, so the features
mentioned here would not add any
functions to the API.

• Adding new synthesized voices.
These can be imported into
FreeTTS (and thus Voce) from
voice creation software projects

like Festvox [10] and MBROLA
[11].

• More programming language
support. Bindings could be
generated for Python [12], for
example.

• Comprehensive documentation.
API documentation and tutorials
(for using the library and
generating grammar files) would
aid new users. This is currently
in progress.

6 Conclusions

The Voce library provides application
developers with an Open Source, cross-
platform library for speech synthesis and
recognition with a simple API that can
be used in Java and C++ (see [7] to
download the library). Despite its
simple interface, the underlying
technology is very powerful, thanks to
the hard work by the FreeTTS and
Sphinx4 development teams. It is hoped
that this library will further promote the
use of speech interaction technology by
application developers.

Appendix A

This appendix gives a short description
of the Voce C++ API. The Java Voce
API is identical.

void init(const std::string& vocePath, bool
 initSynthesis, bool initRecognition,
 const std::string& grammarPath, const
 std::string& grammarName)

“init” initializes the library, giving it the
path to the Java classes and its XML
configuration file. The two Boolean
arguments tell the library whether to
initialize speech synthesis and
recognition capabilities. If an
application only requires the use of one
of these features, it can be beneficial to

initialize only that feature to conserve
memory and loading time. The final two
parameters specify the path to the
grammar file and the grammar name
within that file. These are only used
when recognition is being initialized.

void destroy()

“destroy” deallocates all memory used by
Voce (including the Java virtual machine
which is manually created and destroyed
in the C++ version).

void synthesize(const std::string& message)

“synthesize” requests that the given string
be synthesized. The synthesizer
maintains an internal queue of messages
to be synthesized, so if this function is
called again before the first message is
done being synthesized, the second
message gets put onto the queue until the
synthesizer is ready. This allows
multiple synthesize calls in rapid
succession.

void stopSynthesizing()

“stopSynthesizing” makes the synthesizer
stop synthesizing its current message
and removes all queued messages.

int getRecognizerQueueSize()

“getRecognizerQueueSize” returns the number
of recognized strings in the recognizer’s
queue. Applications should use this to
check if there are any new recognized
strings to process.

std::string popRecognizedString()

“popRecognizedString” removes and returns
the oldest string in the recognizer’s
queue.

void setRecognizerEnabled(bool e)

“setRecognizerEnabled” enables and disables
the recognizer. This also starts and stops
the separate thread used for recognition.

bool isRecognizerEnabled()

“isRecognizerEnabled” checks whether the
recognizer is currently enabled.

References

[1] The VoiceCode Project
http://sourceforge.net/projects/voicecode

[2] NASA Sub-Vocal Speech Research
http://www.nasa.gov/centers/ames/news/rele
ases/2004/subvocal/subvocal.html

[3] Dragon Naturally Speaking
http://www.scansoft.com/naturallyspeaking

[4] Microsoft Speech SDK 5.1
http://www.microsoft.com/speech/download
/sdk51

[5] CMU Sphinx
http://cmusphinx.sourceforge.net

[6] FreeTTS http://freetts.sourceforge.net

[7] Voce http://voce.sourceforge.net

[8] Ogre http://www.ogre3d.org

[9] Open Physics Abstraction Layer
http://opal.sourceforge.net

[10] Festvox http://www.festvox.org

[11] MBROLA
http://www.festvox.org/mbrola

[12] Python http://www.python.org

[13] The Open Source Initiative
http://www.opensource.org

[14] The Java Native Interface
http://java.sun.com

