
Tyler Streeter 
tylerstreeter@gmail.com 
 
This text describes the theoretical components that I consider important for 
intelligence.  It follows the architecture of biological brains as closely as 
possible; however, it makes simplifications in places that do not affect the 
overall function.  This model is being developed in a bootstrapping fashion.  It 
starts with a set of assumptions and is continually modified to become closer to 
reality.  Reinforcement learning seems to be the best central idea to this 
model; all other components help improve the process of maximizing rewards 
(including curiosity rewards). 
 
 
================================================================= 
  Theoretical Components of Intelligence - Fundamental Concepts 
================================================================= 
 
 
State Representation 
========================================================= 
This component processes sensory inputs into a set of features that are more 
informative than the direct sensory inputs.  This is accomplished through 
methods such as data simplification (transforming a problem from nonlinear to 
linear, e.g., quantization with RBFs) and data compression (dimensionality 
reduction and feature extraction, e.g., PCA). 
 
 
Policy 
========================================================= 
A policy is simply a mapping from state to action.  Given some situation, it 
chooses an action to perform. 
 
 
Value Function 
========================================================= 
A value function is a mapping from state to value.  "Value" is usually defined 
as the expected discounted future sum of rewards. 
 
 
Reinforcement Learning 
========================================================= 
This is the process of learning the value function and policy.  Both learn 
incrementally using temporal difference learning. 
 
 
Planning (i.e. Learning and Using a Predictive Model of the Environment) 
========================================================= 
A predictive model of the environment enables the agent to speed up 
reinforcement learning.  Instead of interacting directly with the environment 
(in order to improve the value function and policy), the agent can learn from 
imagined scenarios.  This is much faster and safer than learning in the real 
world.  Such a model can be trained to predict using the actual observations 
that occur. 
 
A prediction model can be designed to: 1) map states and actions to next states, 
or 2) map states to next states.  (Both methods have been tested in a discrete 
grid maze task and gave similar results; however, method 2 might only work in 



such tasks where the policy converges to a deterministic action selector.)  
Method 2 would require separate state and action hierarchies (that are joined at 
the top, via the policy), and predictions would occur only in the state 
hierarchy.  Alternatively, we could just always supply efferent copies of the 
current action into the state representation; i.e. the action is *part of* the 
state.  (Biological evidence for this: efferent copies of motor signals are 
represented in the somatosensory cortex.) 
 
 
Curiosity 
========================================================= 
Curiosity is an internal drive to learn (i.e. to improve the predictive model).  
It depends on the presence of a predictive model.  Curiosity can be modeled by 
giving the agent a curiosity reward proportional to 1) the novelty/uncertainty 
of a state (i.e. the mean squared error of the model predictions), or 2) the 
reduction in novelty/uncertainty over time (i.e. it is rewarding to learn new 
things).  A curiosity drive constantly exposes the agent to new situations and 
helps build its predictive model. 
 
According to Oudeyer and Kaplan (see "Intelligent Adaptive Curiosity", or IAC), 
uncertainty reduction must be measured according to specific situations.  In 
other words, curiosity rewards are proportional to uncertainty reduction over 
time in a specific state; in other words, curiosity rewards are local. 
 
 
Uncertainty 
========================================================= 
Uncertainty is also known as "novelty" and "prediction errors."  This is closely 
tied to predictive models.  Uncertainty can be modeled as a measure of 
prediction errors, i.e. the mean squared error of predictions.  It is possible 
to have a metapredictor that predicts other predictive models' prediction 
errors.  Having an estimate of one's own uncertainty about states is important.  
This can be used to determine how long to plan; longer plans require more 
certainty about state transition predictions (there is no use planning if we're 
not sure the predicted events will occur).  Uncertainty can also determine the 
*novelty* of a state, useful for a curiosity drive. 
 
 
============================================================== 
  Theoretical Components of Intelligence - Advanced Concepts 
============================================================== 
 
 
Hierarchical Policies 
========================================================= 
Using the theory of "options," let's expand the definition of a policy: a policy 
(or "option") is a mapping from state to action that has an initial state which 
triggers the policy and a goal state which stops the policy.  With this 
definition we can construct a hierarchy of policies; a policy gets triggered by 
its initial state and continues until it reaches its goal state.  A high level 
policy proceeds by executing its child policies in the hierarchy.  Thus, high 
level policies are temporally longer than low level ones.  At the very bottom of 
the policy hierarchy is a set of inborn, hard-coded, atomic behaviors.  This 
policy hierarchy helps the agent learn high-level policies faster; learned 
policies can be reused to achieve other similar goals.   
 
 



Attention 
========================================================= 
"Attention" refers to the limited amount of information that can be processed 
consciously at once.  (For example, in the brain most sensory input goes through 
the thalamus, which could act as a gating system for information processing.)  
Theoretically, a limited attention channel might correspond to the limited 
amount of state/policy data that can be used for planning at once - we can only 
plan at a specific part of the state/policy hierarchy at a time.  Attention 
could be guided by curiosity using a winner-take-all scheme: the area of the 
state/policy hierarchy that generates the highest curiosity reward (i.e. 
novelty, or novelty reduction) attracts the most attention.  Note that attention 
can be externally or internally guided; externally guided attention comes from 
novel sensory inputs, whereas internally guided attention comes from novel 
situations experienced through planning/imagining.  Overall, attention would 
save computational resources in computational models and metabolic resources in 
biological brains. 
 
 
Spatial and Temporal Abstraction 
========================================================= 
In general, it is more efficient to process only the most salient features of 
sensory inputs (i.e. the "edges" of spatial objects and temporal events). 
 
 
Hierarchical Planning and Exploration 
========================================================= 
With hierarchical policies/options, we can plan at any level of the hierarchy.  
Planning at higher levels is more efficient as it skips over low-level details.  
Similarly, exploration at higher levels allow temporally longer exploratory 
actions. 
 
 
Chunking 
========================================================= 
Well-learned motor sequences get "chunked" into distinct modules with well-
defined beginning states and end states.  These modules become "options." 
 
 
Methods for Efficient State Representations 
========================================================= 
A state representation can be made more efficient through several methods: 
 - Data simplification (transforming from nonlinear to linear with 
quantization) 
 - Data compression (dimensionality reduction) 
 - Hierarchical organization 
 - Prediction error-based information flow 
 
Data Simplification with RBF Quantization 
--------------------------------------------- 
To make complex problems easier to solve (i.e. by transforming nonlinear 
problems to linear problems), we can "quantize" continuous values by covering 
the input spaces with a discrete number of basis functions.  This produces a 
"feature map" which maps data from the input space to a single area in "feature 
space." 
 
Gaussian radial basis functions (RBFs) let us cast a pattern classification (or 
function approximation?) problem in a high-dimensional space nonlinearly, making 



it more likely to be linearly separable than in a low-dimensional space (Cover's 
theorem, 1965). 
 
A useful extension to RBF representations (and other quantization methods) is 
competitive learning/self-organizing maps.  Using unsupervised learning rules, 
units "compete" in a winner-take-all scheme.  The "winner" determines the 
classification of the given input.  The winning unit (or neighborhood of units) 
usually move in the direction of the input data.  This approximates "principal 
curves/surfaces," making it a nonlinear generalization of PCA.  K-means 
clustering is a type of SOM that computes cluster centroids explicitly. 
 
This learning method is local: only one output is active at once.  Thus, this is 
good for classification tasks.  This generates a representation that is easier 
to use for learning than non-local representations, but it does not generalize 
as well as non-local methods. 
 
Example: A Kohonen self-organizing map (SOM) converts a data point (of arbitrary 
dimension) into a distinct localized region of activity in a 1D or 2D map, with 
each unit connected only to a few neighbors.  It chooses the centers of units by 
moving the "winners" closer to the input data.  This distributes resources 
(feature detectors) intelligently across the input space. 
 
Useful Modifications: 
1. It is possible to adjust the units' neighborhood widths (e.g., decay over 
time, or scale them based on unit density). 
2. Rather than starting with a full map of random units, the units can be 
allocated on demand to save resources.  This avoids wasting units in low density 
regions of the input space. 
 
There are various ways to quantize multidimensional data.  The following are 
four different methods: 
1. Direct n-dimensional quantization, covering the whole n-dimensional input 
space with a grid of equally-spaced units 
2. Optimized n-dimensional quantization (same as the direct method, except that 
we use something like a SOM to use resources more efficiently) 
3. Direct 1-dimensional quantization, where each dimension is quantized 
separately 
4. Optimized 1-dimensional quantization (same as direct 1-dimensional, but use a 
SOM) 
(The n-dimensional methods require 2^n units, but the 1-dimensional methods only 
need qn units, where q is the number of units per dimension.) 
 
 
Data Compresstion with PCA 
--------------------------------------------- 
Using principal components analysis (PCA), we can reduce the dimensionality of a 
data set without losing much information.  This also enables feature extraction: 
resulting data set represents more informative "features" that have been 
statistically decorrelated.  Note that the result is linearly related to the 
original data. 
 
This can be performed by neural networks with unsupervised Hebbian learning 
rules.  This is a non-local learning method; many outputs will be active at 
once, each representing the degree to which the input data varies along the 
principal components (i.e. which "features" it contains) using the inner product 
between the input vector and the principal component vectors.  Note that non-
local learning rules are good at generalization. 



 
Incremental PCA Algorithms (do not require a covariance matrix): 
1. Simple Hebb rule w/ normalization: w = w + n(yx), then w = w / ||w||^2; 
computes the dominant eigenvector 
2. Oja's basic adaptive rule (Oja, 1982): using a single output neuron, dW = 
ny(X - yW)dt; 1st term = pos feedback, 2nd term = neg feedback 
(forgetting/leakage factor); extracts first principal component 
7. Stochastic Gradient Ascent (SGA) (Oja and Karhunen, 1985): slow, possibly 
unstable 
3. Generalized Hebbian Algorithm (GHA) (Sanger, 1989): expansion of Oja's basic 
rule; components are sequentially computed and subtracted out; sequential; does 
not use inhibitory connections 
4. Backward inhibition (Hrycej, 1989): inhibit inputs w/ outputs to filter out 
each successive component; sequential 
5. Delta-rule self-organization (Hrycej, 1990-1992): dW = nY(X - YW)dt; 
parallel, less stable, slower convergence 
6. Adaptive Principal Components Extraction (APEX) (Kung and Diamantaras, 1990): 
uses feedback connections 
8. Candid Covariance-Free Incremental PCA (CCIPCA) (Weng, Zhang, Hwang, 2003): 
excellent convergence, fast execution 
 
Simple PCA works best when the problem is linear.  However, it might be 
beneficial to apply PCA on a set of features that are nonlinearly related to the 
actual input data (e.g., using RBFs), thus generating the principal components 
in feature space (instead of input space).  Kernel PCA allow this by performing 
regular PCA on the feature vector (assuming an inner product Mercer kernel, 
e.g., RBF, see Table 6.1 on p. 333 of Haykin, Neural Networks).  "Kernel PCA is 
linear in feature space but nonlinear in the input space" (p. 434-435, Haykin, 
Neural Networks). 
 
Hierarchical Organization 
--------------------------------------------- 
Instead of having all sensory inputs converge onto a single feature array, we 
use a hierarchy of feature arrays.  The higher levels combine low level elements 
to represent more abstract concepts.  At the very lowest level are the inborn, 
hard-coded sensors that gather information directly from the environment.  In 
general, each of these arrays must be connected to every array in the level 
below and the level above.  However, this is probably not necessary; for some 
sensory input arrays (say, vision), the lower parts of the hierarchy will not 
need to connect to the lowest levels of, say, the somatosensory input array.  
Only at the higher levels should the various major sensory input hierarchies be 
combined into a single hierarchy.  Still, how do we know which sensory input 
hierarchies to combine at which levels?  We could start with all the higher 
levels fully connected, then gradually remove connections over time that never 
get used.  Each element in the hierarchy could learn a predictive model of its 
child elements: an element sends predictions downwards and prediction errors 
upwards. 
 
By having each module contain its own predictive model, we would automatically 
enable localized curiosity (which is necessary, according to Oudeyer and Kaplan 
- see IAC papers). 
 
Information traveling up the hierarchy converges into higher-level invariant 
representations; info traveling down diverges into lower-level details.  The 
activation of units at higher levels changes slowly; low-level units change 
rapidly.  In other words, high-level units represent the "names" of low-level 



sequences; they remain active as long as the sequence lasts.  Lower units 
represent shorter sequences that can be reused by multiple higher units. 
 
Fortunately, having a hierarchy of units that learn sequences automatically 
enables "chunking" of well-learned sequences (i.e. options).  When planning over 
high level options, it is possible to skip over the low-level details straight 
to the predicted final state.  This can be accomplished by simply not iterating 
through the child elements sequentially. 
 
A multistage hierarchical structure would help reduce computational complexity 
by reducing the processing to a number of small suboperations.  For example, the 
following structure combines 4 dimensions: 
 
input0 ---> [          ] 
input1 ---> [ Abstract ] 
input2 ---> [ Features ] 
input3 ---> [          ] 
 
...and the following hierarchical structure combines 2 dimensions at each node: 
 
input0 ---> [ Abstract ] 
input1 ---> [ Features ] ---> [                   ] 
                              [ Abstract Features ] 
input2 ---> [ Abstract ] ---> [                   ] 
input3 ---> [ Features ] 
 
Using RBFs with 10 RBFs per dimension, the first method requires 10^4 = 10,000 
RBFs.  The second method requires 3 * 10^2 = 300 RBFs. 
 
How do multiple inputs converge?  Two methods: 
1. Multidimensional RBFs - probably not biologically realistic (cells are not 
tuned to values in several dimensions at once) 
2. PCA 
 
Prediction Error-Based Information Flow 
--------------------------------------------- 
In a hierarchical structure, we can reduce the amount of information flowing 
upwards by only encoding prediction errors.  This assumes that the elements of 
the hierarchy develop predictive models of their inputs.  Each level receives 
actual data from below and predicted data from above.  Only prediction errors 
are passed up to higher levels (i.e. if you don't understand what you're seeing, 
ask someone higher up).  Each level recognizes spatial patterns and temporal 
patterns (sequences).  This prediction-based structure can also act as a 
predictive model for planning. 
 
Note that prediction errors are constantly occurring, even in nearly optimal 
predictors, assuming the environment is nondeterministic.  Another way to think 
about prediction errors is that they are the "edges" of objects and temporal 
events; the stuff between the edges is predictable. 
 
(The following ideas on predictive representations in the brain come from Jeff 
Hawkins's book, On Intelligence.) 
 
Each unit can classify input data (recognition model) and predict future data 
(generative model). 
 
Lower units send two signals to higher units: 



1. A simple activation signal, signifying when the unit is active in a sequence 
2. Prediction errors (i.e. "I can't handle this data, so I'll pass it upwards.") 
 
Each unit classifies its lower-level inputs using a discrete set of 
possibilities.  A unit recognizes a sequence of incoming patterns, and it can 
predict the next input pattern and tell lower units what to expect. 
 
Units can send their output (prediction errors?) back to themselves, enabling 
"imagining" (planning). 
 
Information flowing downwards (i.e. predictions) can activate many units below 
it.  Each unit becomes active only when the right combination of inputs from 
below are present.  Lateral inhibition enables a winner-take-all scheme during 
classification; however, this only applies locally within a region, so several 
units can still be active at once. 
 
Layer 1 of each unit/column receives the "previous state" from the thalamus (p. 
144).  This "state" includes sensory and motor information (p. 157).  Half of 
the input to layer 1 is from neighboring units (p. 149).  The other half comes 
from higher regions, representing the "name" of a sequence.  Thus, a unit 
receives the name of the current sequence and the position within the sequence, 
allowing lower units to be reused among many higher-level sequences.  Top-down 
predictions (e.g. a 5th interval in music) and bottom-up data (e.g. current note 
is D) combine to form a specific prediction: the next note is A. 


